
Realtime control of sequence generation with character based
Long Short Term Memory Recurrent Neural Networks

Memo Akten, Goldsmiths University of London
Mick Grierson, Goldsmiths University of London

Huosheng Hu, University of Essex

Abstract

Recurrent Neural Networks (RNNs) — particularly Long
Short Term Memory (LSTM) RNNs — are a popular and
very successful model for generating sequences. However,
most LSTM based sequence generation techniques are cur-
rently not interactive and do not allow continuous control of
the sequence generation, let alone in a gestural or expressive
manner. This research investigates methods of realtime con-
tinuous control and steering of RNN sequence generation, as
well as ways of expressively controlling the output.

Introduction
Recurrent Neural Networks (RNN) are Artificial Neural
Networks with recurrent connections, allowing them to
model sequences. Long Short Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber 1997) are a kind of
RNN with differentiable gates, allowing them to overcome
the so-called exploding and vanishing gradients problem
and preserve information from many time-steps in the past.

Now with increased compute power and large training
sets, LSTMs and variants are having lots of success not
only in sequence classification (Greff et al. 2015), but
also in sequence generation (Eck and Schmidhuber 2002;
Sutskever, Martens, and Hinton 2011; Sutskever 2013;
Graves 2013; Nayebi and Vitelli 2015; Gregor et al. 2015;
Wu and King 2016; Crnkovic-friis and Crnkovic-friis 2016).

However, sequence generation with RNNs is currently not
an interactive process. Some recent implementations have
used a turn-based approach, such as the online text editor
Word Synth (Goodwin 2016), which allows a user to en-
ter a seed for the RNN before it generates the next phrase.
Though this is still not realtime continuous control of the
output, let alone an expressive experience.

Method
We’re using character based text models as it has been
demonstrated that LSTMs are successful in generating char-
acter sequences (Graves 2013; Karpathy 2015). First we
train a number of models on varied corpus of text. Then
the system generates text character by character, and while
it’s outputting, we can gesturally steer the output towards the
style of different models.

1. Training We train numerous LSTM models, each on a
different corpus of text. These include the works of Shake-
speare, Baudelaire, Nietzsche, Jane Austen, Donald Trump,
the Dalai Lama, the King James Bible, assorted love song
lyrics, Linux kernel C code, LATEX source and more. Each
corpus is picked due to its nature of being easily recogniz-
able in style and content.

2. Prediction, visualization and interaction Once
trained, the system generates text by: running each of the
models, mixing their output probability distributions pi via
model mixture weights wm, sampling a character from the
mixed probability distribution pmix, and feeding the sam-
pled character back in as an input.

The system generates and outputs characters at roughly
10-20 chars/second. While it’s outputting, we can steer the
output towards different models by interacting with the sys-
tem and dynamically shifting the mixture weights wm for
each model. Interaction is through moving the mouse cur-
sor, moving our hand (tracked by a LeapMotion), or playing
with midi sliders.

We are thus able to guide the system to morph between the
different models’ output with relatively smooth transitions.

Results and discussion
In this study we trained multiple models on different cor-
pora and mixed their predicted pi via wm, interactively con-
trolled at every step by a user’s gestures. This allows a user
to continuously control the output of an LSTM as it gen-
erates a sequence, and seamlessly morph it between styles
while it’s generating. Figure 1 shows an example output.

The system works well and demonstrates interesting be-
haviour. When multiple models are active, containing words
or phrases that are common to all models, the probabilities
for the common next characters accumulate whilst probabil-
ities specific to individual models are suppressed, i.e. when
multiple models are active the system tends towards com-
mon words and phrases.

Sometimes, while a sequence is being generated, a partic-
ular model might have a spiking pi (very high confidence
for a particular character). If at that point other models
have wider pi (lower confidence aross multiple characters),
then the first model will overpower and dominate the se-



Figure 1: An example of the screen and output. Each model’s output probability distributions pi can be seen, as well as the
model mixture weights wm (horizontal grey bars) and final mixed probability distribution pmix (top row).

quence generation. This is quite likely to start a positive
feedback loop and that model will stay in control of the se-
quence generation until it reaches a point where its proba-
bility distribution widens, and another model spikes. So it’s
very possible to see hints of love songs, philosophy or poetry
within C comments and variable names or LATEX equations.
It seems there are ‘hand-over’ words or sequences which are
common to many models, but have stronger connotations in
some models over others. This is of course further guided
by the user’s actions, who can choose to push further to-
wards the emerging theme, or pull towards another style and
seamlessly go from one style to another over these hand-over
words.

As opposed to training many models independently on
different corpora, another approach we are looking at is
using a single model trained on the entire corpora. Then
controlling output via manipulating the internal state of the
LSTM. This has advantages and disadvantages, particularly
when it comes to adding a new corpus (style) to the system.

References

Crnkovic-friis, L., and Crnkovic-friis, L. 2016. Gener-
ative Choreography using Deep Learning. arXiv preprint
arXiv:1605.06921.

Eck, D., and Schmidhuber, J. 2002. A First Look at Music
Composition using LSTM Recurrent Neural Networks. Isti-
tuto Dalle Molle Di Studi Sull Intelligenza Artificiale 103.

Goodwin, R. 2016. Word Synth.

Graves, A. 2013. Generating sequences with Recurrent Neu-
ral Networks. arXiv preprint arXiv:1308.0850.
Greff, K.; Srivastava, R. K.; Koutnı́k, J.; Steunebrink,
B. R.; and Schmidhuber, J. 2015. LSTM: A Search Space
Odyssey. arXiv preprint arXiv:1503.04069.
Gregor, K.; Danihelka, I.; Graves, A.; and Wierstra, D.
2015. DRAW: A Recurrent Neural Network For Image Gen-
eration. arXiv preprint arXiv:1502.04623.
Hochreiter, S., and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation 9(8):1735–1780.
Karpathy, A. 2015. The Unreasonable Effectiveness of Re-
current Neural Networks.
Nayebi, A., and Vitelli, M. 2015. GRUV : Algorithmic
Music Generation using Recurrent Neural Networks.
Sutskever, I.; Martens, J.; and Hinton, G. 2011. Generat-
ing Text with Recurrent Neural Networks. In Proceedings
of the 28th International Conference on Machine Learning
(ICML-11), volume 131. 1017–1024.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural Networks. In Advances in
Neural Information Processing Systems, 3104–3112.
Sutskever, I. 2013. Training Recurrent Neural Networks.
Ph.D. Dissertation, University of Toronto.
Wu, Z., and King, S. 2016. Investigating Gated Recurrent
Neural Networks for Speech Synthesis. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 5140–5144. IEEE.


